12 Trigonometric Ratios

UNDERSTAND Triangles $L M N$ and DEF both have a 90° angle and a 30° angle, so $\triangle L M N \sim \triangle D E F$ by the AA~Postulate. Because the triangles are similar, corresponding sides are proportional.

$$
\frac{L M}{D E}=\frac{M N}{E F}=\frac{N L}{F D}
$$

If we take the first two ratios and multiply by $\frac{E F}{L M^{\prime}}$ we get a new proportion: $\frac{E F}{D E}=\frac{M N}{L M}$. The ratio of
 the leg opposite the 30° angle divided by the hypotenuse is the same for both triangles. This ratio is called the sine ratio.

The ratios of the side lengths of a right triangle depend on the measures of its acute angles. These ratios are called trigonometric ratios.

Thinking "SOH-CAH-TOA" can help you remember these ratios: Sine/Opposite/Hypotenuse-Cosine/Adjacent/Hypotenuse-Tangent/Opposite/Adjacent. Using these ratios, you can find the length of any side of a right triangle if you know one acute angle and any other side.

UNDERSTAND Some right triangles have trigonometric ratios that are easy to remember.
$45^{\circ}-45^{\circ}-90^{\circ}$ triangle:

$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
$\tan 45^{\circ}=1$
$30^{\circ}-60^{\circ}-90^{\circ}$ triangle:

$\sin 30^{\circ}=\frac{1}{2}$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2} \quad \cos 60^{\circ}=\frac{1}{2}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

Connect

Consider right triangle JKL. What are the sine, cosine, and tangent ratios for $\angle K$?

1
Identify the opposite and adjacent legs and the hypotenuse.

The leg opposite $\angle K$ is \bar{J}. Its length is 10 units.

The leg adjacent to $\angle K$ is $\overline{K L}$. Its length is 24 units.

The hypotenuse is $\overline{J K}$. Its length is 26 units.

2
Find the trigonometric ratios.
The degree measure of $\angle K$ is x, so use x in the equations.
$\sin x=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{10}{26}=\frac{5}{13}$
$\cos x=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{24}{26}=\frac{12}{13}$
$\tan x=\frac{\text { opposite }}{\text { adjacent }}=\frac{10}{24}=\frac{5}{12}$

The value of x in the triangle is approximately 22.6°. Use this angle measure and a calculator to check that the ratios found above are accurate. For example, press SIN , enter 22.6, and press ENTER. Then verify that the decimal found is about equal to $\frac{5}{13}$ by dividing 5 by 13. Use the cos and TAN keys to check the other ratios.

EXAMPLEA In isosceles right triangle $P Q R$, an altitude has been drawn from angle Q. Use $\overline{Q S}$ to find the area of $\triangle P Q R$.

1
Find the length of $\overline{P R}$, the hypotenuse of $\triangle P Q R$.

Triangle $P Q R$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with legs 4 centimeters long.

The hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is $\sqrt{2}$ times the length of a leg, so $P R=4 \sqrt{2} \mathrm{~cm}$.

3

Determine the length of $\overline{Q S}$.

Because $\triangle P S Q$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, its legs have equal length.

$$
Q S=P S=2 \sqrt{2}
$$

Find the length of $\overline{P S}$.
$\overline{Q S}$ is an altitude, so $\mathrm{m} \angle P S Q=90^{\circ}$.
Triangles PSQ and RSQ are both $45^{\circ}-45^{\circ}-90^{\circ}$ triangles with a $4-\mathrm{cm}$ hypotenuse, so they are congruent by ASA Theorem.

Because congruent parts of congruent triangles are congruent, $P S=R S$ and each segment is half of $\overline{P R}$.
$P S=\frac{4 \sqrt{2}}{2}=2 \sqrt{2}$

Calculate the area of $\triangle P Q R$.
The area of a triangle is $\frac{1}{2}$ base times height.
$A=\frac{1}{2} \cdot P R \cdot Q S$
$A=\frac{1}{2} \cdot 4 \sqrt{2} \mathrm{~cm} \cdot 2 \sqrt{2} \mathrm{~cm}$
$A=\frac{1}{2} \cdot 8(\sqrt{2})^{2}$
Recall that if $x^{2}=2$, then $x=\sqrt{2}$. So, substituting $\sqrt{2}$ for $x,(\sqrt{2})^{2}=2$.
$A=\frac{1}{2} \cdot 8(2)$

- $A=8 \mathrm{~cm}^{2}$

Find the area of $\triangle P Q R$, using $\overline{P Q}$ and $\overline{Q R}$. Compare the two results.

EXAMPLE B Use trigonometric ratios to find the missing lengths, x and y, in $\triangle F G H$, to the nearest foot.

1
Calculate the value of x.
The given side, which has a length of 15 ft , is adjacent to the given angle, which has a measure of 28°.

The leg labeled x is opposite the 28° angle.

The tangent ratio compares the opposite and adjacent sides.

$$
\tan 28^{\circ}=\frac{x}{15}
$$

(15) $\left(\tan 28^{\circ}\right)=x$

On your calculator, enter $15 \times$ TAN 28 and press ENTER.
$>x \approx 8 \mathrm{ft}$

Use the Pythagorean Theorem to verify that the side lengths you found for $\triangle F G H$ would form a right triangle.

Practice

Find the sine, cosine, and tangent ratios for $\angle D$ in each triangle.
1.

\qquad
$\sin x=$
$\cos x=$ \qquad
$\tan x=$ \qquad
2.

$\sin x=$ \qquad
$\cos x=$ \qquad
$\tan x=$ \qquad

REMEMBER SOH-CAH-TOA

Find the indicated side length in each right triangle.
3.

$x=$ \qquad
4.

$y=$ \qquad
5.

$z=$ \qquad

Fill in the blank with an appropriate word or number.
6. The \qquad of an acute angle in a right triangle is the ratio of its adjacent side length to the hypotenuse.
7. If two right triangles are \qquad then their corresponding acute angles have identical trigonometric ratios.
8. The hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is \qquad times longer than each leg.
9. The hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is \qquad times the length of its shorter leg.

Use trigonometric ratios to find the lengths x and y in each triangle to the nearest foot.
10.

\qquad
$y \approx$ \qquad
11.

$x \approx$ \qquad
$y \approx$ \qquad

Triangle JKL was dilated by a scale factor of $\frac{2}{3}$ and translated to the right to form $\Delta J^{\prime} K^{\prime} L^{\prime}$. Use this diagram for questions 12 and 13.

12. How does the tangent of $\angle L$ compare to the tangent of $\angle L^{\prime}$? Explain.
\qquad
\qquad
\qquad
14. COMPUTE The diagonal $\overline{A C}$ in the square below is 10 inches long. Compute the exact area of square $A B C D$.

\qquad
15. SHOW Find the exact area of equilateral triangle KLM.

