

Ē

Trigonometric Ratios

UNDERSTAND Triangles *LMN* and *DEF* both have a 90° angle and a 30° angle, so $\triangle LMN \sim \triangle DEF$ by the AA~ Postulate. Because the triangles are similar, corresponding sides are proportional.

$$\frac{LM}{DE} = \frac{MN}{EF} = \frac{NL}{FD}$$

If we take the first two ratios and multiply by $\frac{EF}{LM'}$, we get a new proportion: $\frac{EF}{DE} = \frac{MN}{LM}$. The ratio of the **leg** opposite the 30° angle divided by the

hypotenuse is the same for both triangles. This ratio is called the sine ratio.

The ratios of the side lengths of a right triangle depend on the measures of its acute angles. These ratios are called **trigonometric ratios**.

Sine of
$$\angle A = \sin A = \frac{\text{Opposite leg length}}{\text{Hypotenuse}} = \frac{a}{c}$$

Cosine of $\angle A = \cos A = \frac{\text{Adjacent leg length}}{\text{Hypotenuse}} = \frac{b}{c}$
Tangent of $\angle A = \tan A = \frac{\text{Opposite leg length}}{\text{Adjacent leg length}} = \frac{a}{b}$
a $\frac{b}{d}$
b $\frac{b}{d}$
b $\frac{b}{d}$
c $\frac{b}{d}$
c

Thinking "SOH-CAH-TOA" can help you remember these ratios: Sine/Opposite/Hypotenuse-Cosine/Adjacent/Hypotenuse-Tangent/Opposite/Adjacent. Using these ratios, you can find the length of any side of a right triangle if you know one acute angle and any other side.

UNDERSTAND Some right triangles have trigonometric ratios that are easy to remember.

$$45^{\circ}-45^{\circ}-90^{\circ}$$
 triangle:

$$x = \frac{45^{\circ} \times \sqrt{2}}{45^{\circ}}$$

 $\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

 $tan 45^{\circ} = 1$

 $30^{\circ}-60^{\circ}-90^{\circ}$ triangle:

 $\sin 30^{\circ} = \frac{1}{2} \qquad \sin 60^{\circ} = \frac{\sqrt{3}}{2} \\ \cos 30^{\circ} = \frac{\sqrt{3}}{2} \qquad \cos 60^{\circ} = \frac{1}{2} \\ \tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \qquad \tan 60^{\circ} = \sqrt{3} \end{cases}$

Connect

1

Consider right triangle JKL. What are the sine, cosine, and tangent ratios for $\angle K$?

2

Identify the opposite and adjacent legs and the hypotenuse.

The leg opposite $\angle K$ is \overline{JL} . Its length is 10 units.

The leg adjacent to $\angle K$ is \overline{KL} . Its length is 24 units.

The hypotenuse is \overline{JK} . Its length is 26 units.

Find the trigonometric ratios.

The degree measure of $\angle K$ is x, so use x in the equations.

$$\sin x = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{10}{26} = \frac{5}{13}$$
$$\cos x = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{24}{26} = \frac{12}{13}$$
$$\tan x = \frac{\text{opposite}}{\text{adjacent}} = \frac{10}{24} = \frac{5}{12}$$

Duplicating this page is prohibited by law. © 2015 Triumph Learning, LLC

CHECA

The value of x in the triangle is approximately 22.6°. Use this angle measure and a calculator to check that the ratios found above are accurate. For example, press SIN, enter 22.6, and press ENTER. Then verify that the decimal found is about equal to $\frac{5}{13}$ by dividing 5 by 13. Use the COS and TAN keys to check the other ratios. 1

3

CHECK

EXAMPLE A In isosceles right triangle *PQR*, an altitude has been drawn from angle *Q*. Use \overline{QS} to find the area of $\triangle PQR$.

Find the length of \overline{PR} , the hypotenuse of $\triangle PQR$.

Triangle *PQR* is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with legs 4 centimeters long.

The hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is $\sqrt{2}$ times the length of a leg, so $PR = 4\sqrt{2}$ cm.

Determine the length of \overline{QS} .

Because $\triangle PSQ$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, its legs have equal length.

 $QS = PS = 2\sqrt{2}$

Find the area of $\triangle PQR$, using \overline{PQ} and \overline{QR} . Compare the two results. 2 Find the length of \overline{PS} .

 \overline{QS} is an altitude, so m $\angle PSQ = 90^{\circ}$.

4 cm

45°

Q

S

4 cm

45°

R

Triangles PSQ and RSQ are both $45^{\circ}-45^{\circ}-90^{\circ}$ triangles with a 4-cm hypotenuse, so they are congruent by ASA Theorem.

Because congruent parts of congruent triangles are congruent, PS = RS and each segment is half of \overline{PR} .

$$PS = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$$

Calculate the area of $\triangle PQR$.

The area of a triangle is $\frac{1}{2}$ base times height. $A = \frac{1}{2} \cdot PR \cdot QS$

$$A = \frac{1}{2} \cdot 4\sqrt{2} \text{ cm} \cdot 2\sqrt{2} \text{ cm}$$

$$\mathsf{A} = \frac{1}{2} \cdot \mathsf{8}(\sqrt{2})^2$$

4

Recall that if $x^2 = 2$, then $x = \sqrt{2}$. So, substituting $\sqrt{2}$ for x, $(\sqrt{2})^2 = 2$.

$$A = \frac{1}{2} \cdot 8(2)$$
$$A = 8 \text{ cm}^2$$

CHECK

Use the Pythagorean Theorem to verify that the side lengths you found for $\triangle FGH$ would form a right triangle.

Lesson 12: Trigonometric Ratios 99

Practice

Fill in the blank with an appropriate word or number.

- 6. The ______ of an acute angle in a right triangle is the ratio of its adjacent side length to the hypotenuse.
- **7.** If two right triangles are _____, then their corresponding acute angles have identical trigonometric ratios.
- **8.** The hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle is ______ times longer than each leg.
- 9. The hypotenuse of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle is ______ times the length of its shorter leg.

Use trigonometric ratios to find the lengths x and y in each triangle to the nearest foot.

Triangle JKL was dilated by a scale factor of $\frac{2}{3}$ and translated to the right to form $\triangle J'K'L'$. Use this diagram for questions 12 and 13.

12. How does the tangent of $\angle L$ compare to the tangent of $\angle L'$? Explain.

13. Find the value of *x* and the value of *y* to the nearest millimeter.

14. **COMPUTE** The diagonal \overline{AC} in the square below is 10 inches long. Compute the exact area of square *ABCD*.

Duplicating this page is prohibited by law. © 2015 Triumph Learning, LLC

15. SHOW Find the exact area of equilateral triangle *KLM*.

